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General Overview

• In Lecture 5 (Portfolio Theory), we studied how to choose a stock
portfolio.

• In this lecture, we seek to obtain some insight on stocks’ expected
returns.

I How are expected returns determined?

I How are they related to risk?

I What is the relevant measure of risk?

• When put in a demand/supply equilibrium context, portfolio theory
delivers neat insights on expected returns and their relation to risk.
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Overview of Lecture 6

1. Linear Regressions: Basic Notions.

2. Regression and Asset Returns.

3. The CAPM.

4. The CAPM’s Basic Insight.

5. CML vs. SML.

6. Uses of the CAPM.
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1. Linear Regressions

• Suppose we have observations for two variables X and Y , e.g.,

I annual returns R1,t and R2,t on two stocks over time t = 1, . . . ,T

I firm characteristic Xi and average return R̄i over stocks i = 1, . . . ,N.

• We can always describe the relationship between X and Y via a linear
regression model of the form

Y = a + bX + ε,

where the residual ε is such that ε̄ = 0 and Cov(X , ε) = 0.

• Interpretation: the variation in Y is decomposed into

I bX : variation in Y that is “explained” by X ;

I ε: variation in Y that is not “explained” by X .
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Regression Estimation

• For a given sample of observations for X and Y , the coefficients a
and b can be estimated by regression analysis.

• Regression analysis:

I We consider the scatterplot of Y vs. X (as shown next slide).

I We fit the “best” line to the scatterplot.

I Say that line is
y = a + bx .

I Then a is the estimate for the ‘intercept’ coefficient, and b is the
estimate for the ‘slope’ coefficient.

• This gives us a statistical description of the dependence of Y on X .

I Caveat: in general, it should not be interpreted in terms of ‘causality’.
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Scatterplot & Regression Line
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Regression Estimates

• Fact 1: the slope coefficient estimate is given by

b =
Cov(X ,Y )

V (X )
.

• Fact 2: The intercept coefficient is given by

a = Ȳ − bX̄ .

• The residual is simply ε = Y − (a + bX ).

• The estimation results depend on the sample statistics X̄ , Ȳ , V (X ),
and Cov(X ,Y ), and therefore are sensitive to the particular data
sample we are using for estimation.
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Regression Output

Any regression package gives a number of outputs:

• Estimate for intercept coefficient, a.

I Standard error of estimate, sa (measure of estimation uncertainty).

• Estimate for slope coefficient, b.

I Standard error of estimate, sb (measure of estimation uncertainty).

• Standard deviation of residual ε, s(ε).

• R-Square gives fraction of the variation in Y “explained” by X .

R-Square =
V (bX )

V (Y )
=

V (bX )

V (bX ) + s(ε)2
.

Note: V (Y ) = V (a + bX + ε) = V (bX ) + V (ε), since Cov(X , ε) = 0.
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2. Regression and Asset Returns

• Suppose we have historical return data for asset n (e.g., a stock) and
the market (e.g., S&P500 index).

I i.e., we observe Rn,t and RM,t for t = 1, . . . ,T .

• Given the riskfree rate Rf , we can compute excess returns:
I excess return on asset n, Rn − Rf ,
I excess return on the market, RM − Rf .

• We can regress the excess returns of asset n on the market excess
returns. In this case,

I Y is excess return of asset n,
I X is excess return on the market.
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Regression and Asset Returns

• Regression equation for asset n is

Rn − Rf = αn + βn(RM − Rf ) + εn.

• This provides a decomposition of the ‘variation’ in asset n returns
into two components:

I βn(RM − Rf ) captures systematic risk, i.e., risk that is perfectly
correlated with the ‘aggregate’ market.

I εn captures idiosyncratic risk, i.e., risk that is uncorrelated with the
market. By construction, Cov(RM − Rf , εn) = 0.

• Any asset is then characterized by its alpha, beta, and ‘sigma’.

I ‘sigma’ is the standard deviation of the idiosyncratic component, s(ε).
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Regression Example

IBM vs. S&P500 (market portfolio). Monthly returns Jan 1982-Dec 2017.
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Regression Example: Output

• Estimate for alpha (monthly): α = 0.29%.

I Standard error of estimate sα = 0.31%.

• Estimate for beta: β = 0.94.

I Standard error of estimate sβ = 0.07.

• Idiosyncratic volatility (sigma): s(ε) = 6.17%.

• R-Square: 29.8%.
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Beta

• Beta:
Rn − Rf = αn + βn (RM − Rf ) + εn.

Measures the sensitivity of asset n to market movements.

• If the return on the market portfolio is higher by 1%, then the return
on asset n is higher by βn% (holding all else equal).

I The beta of a stock is typically between 0.5 and 2.

• Beta is given by

βn =
Cov(Rn,RM)

V (RM)
' Cov(Rn − Rf ,RM − Rf )

V (RM − Rf )
.
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Alpha and Sigma

• Alpha:
Rn − Rf = αn + βn(RM − Rf ) + εn.

Measures the asset’s attractiveness.

• Sigma:
Rn − Rf = αn + βn(RM − Rf ) + εn .

Sigma is the standard deviation of εn, the asset’s idiosyncratic risk.

Asset volatility depends on beta and sigma. Indeed, return variance
can be decomposed as follows:

V (Rn − Rf ) = β2nV (RM − Rf ) + V (εn).
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Expected (Excess) Return

• Regression equation

Rn − Rf = αn + βn(RM − Rf ) + εn.

• Taking expectations and using the fact that E (εn) = 0, we get

E (Rn)− Rf = αn + βn(E (RM)− Rf ).

• The expected excess return of asset n depends on

I the asset’s alpha, αn

I the asset’s beta, βn

I the market risk premium, E (RM)− Rf .

• The CAPM will yield some sharp prediction about alpha.
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3. The CAPM

• The CAPM is a theoretical model which provides insight on assets’
expected returns.

• Assumptions:

I There are N risky assets and a riskless asset.

I Short sales are allowed and costless.

I Investors care only about mean and variance.

I Investors have the same beliefs.

I Investors have a one-period horizon.

Lecture 6: The CAPM 3. The CAPM Financial Markets I, Spring 2018 16



Asset Demand

• We first consider the demand for assets.

• Recall Lecture 5: Any investor chooses a portfolio on the portfolio
frontier (CML).

• That is, any investor holds a combination of the tangent portfolio and
the riskless asset.

I Very risk-averse: Portfolio closer to riskless asset.

I Not very risk-averse: Portfolio closer to tangent portfolio, or even
above tangent portfolio.

• Investors as a group:

I Hold a combination of tangent portfolio and riskless asset.
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Supply: The Market Portfolio

• The market portfolio is the value-weighted portfolio of the N risky
assets.

• Let Pn denote the price per share and sn the total number of shares.
The market value (market capitalization) of asset n is Pnsn.

I Total market capitalization is
∑N

i=1 Pi si .

• The weight of asset n in the market portfolio is

wn =
Pnsn∑N
i=1 Pi si

.

• The return on the market portfolio is RM =
∑N

n=1 wnRn.

• The ‘market risk premium’ is the expected excess return of the market
portfolio:

E (RM)− Rf =

(
N∑

n=1

wnE (Rn)

)
− Rf =

N∑
n=1

wn (E (Rn)− Rf ) .
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Market Equilibrium

• Equilibrium: demand equals supply.

• Therefore, in equilibrium,

The Tangent portfolio must coincide with the Market portfolio.

• Example:

I Suppose that GE has a weight of 0.7% in the tangent portfolio,
whereas it has a weight of 1% in the market portfolio.

I Supply of GE exceeds demand ⇒ the price of GE has to fall.

I As a result:

- Weight of GE in market portfolio decreases.

- Weight of GE in tangent portfolio increases (higher expected return).

I The price falls until weights become equal.
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Towards the CAPM Equation

• Recall from Lecture 5 that any portfolio P on the CML is such that
the ratio

E (Rn)− Rf

Cov(Rn,RP)

is independent of the particular asset n.

• In equilibrium, the market portfolio coincides with the tangent
portfolio, which is on the CML.

• Therefore, the ratio
E (Rn)− Rf

Cov(Rn,RM)

is equal across all assets n.
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Towards the CAPM (cont’d)

• This observation implies there exists some value λ such that for all
asset n

E (Rn)− Rf = λCov(Rn,RM).

An asset’s expected return is proportional to its covariance with the
market.

• A simple argument shows that (see proof next slide)

λ =
E (RM)− Rf

V (RM)
.

• Therefore, for any asset n

E (Rn)− Rf =
E (RM)− Rf

V (RM)
Cov(Rn,RM)

= (E (RM)− Rf )× Cov(Rn,RM)

V (RM)
.
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Proof: The “Price of Covariance Risk”, λ

• We know that there exists a value λ such that for any asset n

E (Rn)− Rf = λCov(Rn,RM).

• Premultiplying by wn, the weight of asset n in the market portfolio,
and summing over all assets, we get

N∑
n=1

wn(E (Rn)− Rf ) = λ

N∑
n=1

wnCov(Rn,RM)

⇒
N∑

n=1

wnE (Rn)−

(
N∑

n=1

wn

)
Rf = λCov

(
N∑

n=1

wnRn,RM

)
⇒ E (RM)− Rf = λCov(RM ,RM) = λV (RM).

• Therefore

λ =
E (RM)− Rf

V (RM)
.
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The CAPM Equation

• Using the definition of the beta of asset n

βn =
Cov(Rn,RM)

V (RM)
,

we obtain the main CAPM prediction:

E (Rn)− Rf = (E (RM)− Rf )× βn
i .e., E (Rn) = Rf + MRP× βn.

• Recall that the regression equation implies that

E (Rn)− Rf = αn + βn(E (RM)− Rf ).

The CAPM predicts that αn = 0.

Lecture 6: The CAPM 3. The CAPM Financial Markets I, Spring 2018 23



4. Key Insights from the CAPM

• The CAPM says

E (Rn)− Rf = (E (RM)− Rf )× βn.

• An asset’s expected return depends on the asset’s risk

I through the asset’s beta (systematic risk),

I and not through the asset’s sigma (idiosyncratic risk).

• Key insight:

Systematic risk is “priced” in the market.
Idiosyncratic risk is not.

In other words:

The relevant measure of asset risk
is beta and not the variance.
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Intuition

• Suppose that an asset has positive beta. The CAPM implies that it
has higher return than the riskless asset on average, E (Rn)−Rf > 0.

I Intuition: The asset earns a higher expected return in compensation for
the fact that it increases portfolio risk.

• Suppose that an asset has zero beta. The CAPM implies that its
average return is equal to Rf , the rate of return on the riskless asset.

I Intuition: The asset’s risk is only idiosyncratic and can be diversified.
The asset does not contribute to portfolio risk.

• Suppose that an asset has negative beta. The CAPM implies that it
has lower return than the riskless asset on average.

I Intuition: The asset reduces portfolio risk, i.e., provides insurance.
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Linearity

• The CAPM says

E (Rn) = Rf + (E (RM)− Rf )× βn,

and implies that an asset’s expected return depends on risk only
through beta.

• It also implies that the asset’s expected excess return is linear in beta.

• For instance, if beta is 2, then the asset’s expected excess return is
twice the market risk premium.
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5. Summary: CML vs. SML

• The Capital Market Line (CML)

I is in the standard deviation/expected return space.

I contains all frontier portfolios (and only those).

According to CAPM, the tangent portfolio coincides with the market
portfolio (T = M).

• The Security Market Line (SML)

I is in the beta/expected return space.

I represents expected return as function of beta (according to the
CAPM) for all securities and portfolios.
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CML vs. SML
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6. Uses of the CAPM

• The CAPM provides a simple way to compute risk-adjusted
discount rate.

• This is useful when we want to evaluate a stream of risky cashflows.

I Valuation of stocks (Lecture 7).

I Valuation of firms’ investments (Corporate Finance).

• The CAPM also provides a useful benchmark to

I Spot attractive investment opportunities.

I Evaluate the performance of mutual fund managers.

Key insight: return performance needs to be adjusted for beta risk.
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